
Eötvös Loránd University,
Wigner Research Centre for Physics

Budapest, Hungary

Highly optimized quantum circuits
synthesized via data-flow engines

Peter Rakyta

Laboratory of Quantum Computer
Simulators

 Peter Rakyta
condensed matters

parallel, hardware

oriented programming

 Zoltán Zimborás
many-body phisics

quantum computing

quantum information

 Zoltán Kolarovszki
software engeneering

optical quantum computing

Python programming

 Ágoston Kaposi
algebraic and differential topology

mathematical network modelling

C++, python programming

 Gregory Morse
software engineer

machine learning

parallel, hardware

oriented programming

 Gábor Vattay
Complex Systems

Quantum chaos

 Tamás Kozsik
functional programming

programming languages

Quantum gate decomposition

qubit timelines

quantum program (unitary):

controlled not gates

single qubit
rotations

preserves the norm of the state:

Optimized quantum circuit synthesis

How to find an optimal gate decomposition?
fewest gate count?
smallest depth?

Available gate decomposition utilities:

Quantum Fast Approximate Synthesis Tool (QFAST)
QSearch + LEAP
(Lawrence Berkeley National Laboratory)

UniversalQCompiler (incorporated into QISKIT)
(ETH Zürich, University of York, TUM)

T|ket>: A Retargetable Compiler for NISQ Devices
(Cambridge Quantum Computing Ltd., University of Strathclyde

How close is an approximation to the exact one?

Hilbert-Schmidt test:

exact evolution: U approximate evolution: V

average taken over the Haar
distribution

The fidelity of the approximation:

The cost function of the optimization:
size of the
matrices

for exact decmposition:

How close is an approximation to the exact one?

Frobenius-norm based fidelity

The cost function of the optimization:

"Best Approximate Quantum Compiling Problems"
Liam Madden (University of Colorado),
Andrea Simonetto (IBM Research Ireland)

arXiv:2106.05649

The Fidelity:

Heuristics for Quantum Compiling with
a Continuous Gate Set (QSearch)

partial solutions in graph nodes
f(n): cost function of node n

a) Optimization of continuous
 parameters in U3 gates

b) Combinatorial optimization problem
 of gate structure

Leap extension:

Quantum Fast Approximate Synthesis
 Tool (QFAST)

n-qubit unitary -qubit unitaries n
2

-qubit unitaries n
4

1 and 2-qubit unitaries

Adaptive quantum gate decomposition
 (SQUANDER)

|q0

|q1

U3

U3

Ry

|q0

|q1

U3

U3

Ry

|q2

|q3

U3

U3

Ry U3

U3

Ry

U3

U3

RyU3

U3

Ry

U3

U3

Ry

=

=
φ φ/2 φ/2

Expansion of controlled Ry rotations

Bulding block

Special case

=
0

q0

q1

Decomposing gate structure

 SQUANDER vs QFAST vs QSearch

In the benchmark we tested the decomposition of 3, 4 and 5-qubit unitaries from
online database containing series of circuits published as part of the
Qiskit Developer Challenge, a public competition to design a better routing algorithm.

quantum circuits of well known algorithms:

Grover search,

Quantum Fourier Transformation (QFT)

Quantum Approximate Optimization Algorithm (QAOA),

Quantum variational eigensolver (VQE)

https://github.com/iic-jku/ibm_qx_mapping

Gate synthesis benchmark

gate fidelity:

Gate synthesis benchmark

gate fidelity:

Complexity analysis of the calculations

The cost function of the optimization:

The computational cost to evaluate

trial circuit to
synthesize U

input quantum
program 2nx2n

is M x 4n

Number of gates Number of qubits

Gradient components also need to be calculated

Hardware
accelerator

FPGA implementation of a
quantum computer simulator

reasonable trade-off

computational concurrency
(on-chip multipliers used for multiplications)

number of supported qubits
 (converted into on-chip memory usage)

computational accuracy
(fixed point number representation, bitwidth)

support for arbitrary quantum circuit composed of single qubit
rotations and conditional two-qubit gates

High level development framework of

don't recompile the FPGA implementation when the gate structure is changed

Data-flow implementation of a
quantum computer simulator

Computations: operations
on the elements of a data

stream

Organize data into streams
flowing through the chip

FPGA hardware + data-flow programming model =
Data-flow engine (DFE)

DFE flavour of quantum gate operations

000
001
010
011
100
101
110
111

Unitary
trans.

on the 2nd.
qubit

unitary V transformed unitary V

The elementary gate operations can be represented by
sparse unitaries, mixing element pairs in the columns of V

Organizing the columns of V
into a stream of data

DFE model of
gate operations

DFE implementatio of
quantum gate operations

Stream FIFO

apply unitary
transformation

0,1,...,2n-1 counter
001011001
index: 89} Gate kernel

generator

target qubit (3)

control qubit (6)

control qubit state

target qubit state

target qubit
index pair:

2x2 unitary
transformation

stream of
transformed unitary

Data stream of the
2nx2n unitary matrix

Gate

index

stream from CPU
parameters
and gate sequence

V

V

Stream offset
}

001010001

81

two-component vector
formed from two streams

state machine

Complexity of a gate operation

Amplitude transformation

Karatsuba multiplication of 32-bit integers (W=16 bits)

2 complex multiplication and 1 complex addition

}
3 multiplications instead of 4
and 5 additions

In total: 2 x 3 x 3 = 18 multiplications 18 DSP units are needed

Use Karatsuba strategy for complex multiplications as well

+ look-up-tables (LUTs)

18 bit x 27 bit 32bit multiplications needs to be tiled

digital signal processing (DSP) units for multiplicatios have input ports:

DFE quantum computer simulator

stream to CPU

Memory

Gates

Data stream of the
2nx2n unitary matrix

M
em

or
y

co
nt

ro
ll

er

M
em

or
y

ad
dr

es
s

ge
ne

ra
to

r

Gates

Gates Gates

Gates

Gates
and trace

G
at

e
ke

rn
el

ge

ne
ra

to
r

Gate kernel
data stream

stream from CPU

parameters
and gate sequence

250 MHz260 MHz

150 MHz 350 MHz

350 MHz

350 MHz 350 MHz

350 MHz

350 MHz

storing the tranformed
unitary after each data-stream
round trip and its derivates

on-board

Chain up successive gate operations to increase computational concurrency

Buffer the transformed unitary into the on-board memory (64 GB)

DFE quantum computer simulator

6 x 18 = 108 gates on each Super Logic Region (SLR)

6 asynchronously operating gate blocks

SLR

Each block contains 18 synchronously

operating gate operations

Memory controller

Xilinx Alveo U250 FPGA chips
contain 4 SLRs

In total 432 parallel gate operations
on a single FPGA chip

DFE QC simulator performance

cost function and gradients

can be evaluated with DFE

number of free parameters gate count

gates in the chainfrequency of gates (350MHz)

initialization
overhead

~ms

arithmetic operations per second:

equvalent to 2.72 TOPS
(excluding all integer logic from the count)

DFE vs CPU performance

DFE vs 32-Core AMD EPYC 7542 Processor
(64 threads)

6 qubits 9 qubits

CPU server 1 CPU server 2Scaling up calculations:
split gradients over FPGAs
3 FPGAs per CPU server
MPI between CPU servers

(25-35) kB/sup to 78x speedup

(6-13)x speedup with DFE

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

Gate synthesis benchmark

Further improvements to the compiler

Construct the initial
gate structure VS

interations to compress the
initial gate structure

takes a 2-7 days
for 8-9 qubits

takes a 1-30 minutes

In both cases we need to solve quite similar optimization problem.

(each iteration)

Why is the big difference in the execution time?

1

2 Scale up the compiler to circuits with many qubits

Reorganize circuit to exhibit large 6-10 qubit subblocks that can be optimized

Iterative Gate Compression

Ry

|q0

|q1

U3

U3

Ry

|q2

|q3

U3

U3

Ry U3

U3

Ry

U3

U3

RyU3

U3

Ry

U3

U3

Ry

Try to remove a random 2-qubit block

Try to solve the optimization problem for the reduced circuit
The reduced initial parameter set is derived from the previous solution

p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,...

A well chosen initial parameter set (i.e. correlations between the qubits) is crucial to
speed up the quantum compilation

Solve the optimization problem in 1-30 minutes

How to chose the initial parameter set?

Use machine learning to predict the
initial correlation between the qubits

Supervised machine learning with labeled data:

3

3

Ry

|q0

|q1

U3

U3

Ry

|q2

|q3

U3

U3

Ry U3

U3

Ry

U3

U3

RyU3

U3

Ry

U3

U3

Ry

UnitaryRandom initial parameters

Unitary Initial parameters

Predict initial parameter set from the trained model

streams of data across the chip

data
manipulation

(like transpose)
matrix-matrix
multiplication

elementwise transformations
(arithmetic logical units)

matrix-matrix
multiplication

data
manipulation

(like transpose)

32 streams

32 streams

each stream carries 320 vectorized bytes
over 320 lanes

VXM: int8, int16, int32, uint8, uint16, uint32, float16, float32, bool8, bool16, bool32

supported operands:

MXM: int8 x int8 int32, float16 x float16 float32

110MB 110MB

Concept of Groq QC simulator

MEM VXM

unitary unitary 8x 32-bit float multiplications
6x 32-bit float additions
in toal: 14 ALU units (from 16)

4x2 streams

4x2 streams

gate
kernel

4x2 streams

In total 24 streams (from 32) 4x2 streams
Save the transformed unitary

on the other hemisphere

CPU, FPGA

000
001
010
011
100
101
110
111

Unitary
trans.

on the 3rd.
qubit

unitary V transformed unitary V

320-way SIMD

320-way SIMD

unitary transformation:
In principle 50% more perfromance
by Groq compared to DFE
The preformance can be keep up
to 11 qubits (on DFE the limit is 9 qubits)

 Conclusions and outlook

We have designed a DFE based QC simulator to speed up the
gate synthesis process up to 9 qubit circuits.

Aiming to reduce the execution time by:

Predict intial parameter set with machine learning
(achieve competitive execution time with deterministic tools)

Scale up the decomposition for circuits with more qubits
(transform the circuit with gate identities, optimize 6-9 qubit blocks)

Aknowledgement

This research was supported by the Ministry of Innovation and Technology and the
National Research, Development and Innovation Office within the Quantum Information
National Laboratory of Hungary and Grants No. 2020-2.1.1-ED-2021-00179,
by the ÚNKP-22-5 New National Excellence Program of the Ministry for Culture and
Innovation from the source of the National Research, Development and Innovation Fund,
by the Hungarian Scientific Research Fund (OTKA) Grant No. K134437
and by the Hungarian Academy of Sciences through the Bolyai János Stipendium
(BO/00571/22/11).

contact: Peter Rakyta, peter.rakyta@ttk.elte.hu

We acknowledge the computational resources provided by the Wigner Scientific
Computational Laboratory (WSCLAB) (the formerWigner GPU Laboratory)

